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J. Phys. A :  Math., Nucl. Gen., Vol. 6, March 1973. Printed in Great Britain. 0 1973 

Relativistic theory of magnetoelastic interactions 
11. Constitutive theory 

Gerard A Maugin 
Universite de Paris-VI, Departement de Mecanique Theorique (ERA du CNRS), 
Tour 66-4 Place Jussieu, 75230 Paris Cedex 05, France 

MS received 28 April 1972, in revised form 2 November 1972 

Abstract. In this part of a work devoted to the study of relativistic continua which exhibit 
gyromagnetic phenomena, constitutive equations are obtained for a hyperelastic solid bq 
the use of the thermodynamical admissibility (Clausius-Duhem inequality), the relevant 
potential being the magneto-free energy written in an ud hoc invariant form after applica- 
tion of the author’s formulation of the principle of material frame indifference. The agree- 
ment with equations derived before from a variational formulation is shown. 

1. Introduction 

Part I1 of the present work is a continuation to part I (Maugin 1972f)t in  which we 
set forth the field equations of a relativistically invariant theory of magnetoelastic 
interactions where the magnetic spin is taken into account. In contrast to the variational 
treatment given by Maugin and Eringen (1972c), these equations were established for 
general thermodynamical processes. We may have dissipative stresses, heat propagation 
and relaxation of the magnetic spin. I t  is the purpose of this paper to  develop with the 
aid of the principles of thermodynamics, constitutive equations for these general 
processes. That is, this work constitutes the relativistic counterpart of the classical 
three-dimensional theory developed by Maugin and Eringen (1972a, b) and Maugin 
(1972h) (see also Maugin 19728). We recall that the present problem resorts to nzicro- 
rnugnetic theory whose main concern is the study of the time evolution of the magnetiza- 
tion vector also referred to as magnetic spin. This constitutes the main improvement 
with respect to the theory of magnetoelastic interactions achieved by Grot and Eringen 
(1966). 

Using the notations of Maugin (1972f), p being the relativistically invariant matter 
density and the magnetization four vector per unit of proper volume, the magnetiza- 
tion four vector per unit of proper mass is defined as 

The instantaneous motion of this essentially spatial axial four vector is characterized by 
the infinitesimal Lorentz transformation which defines the evolution of the system as 
the time goes on. Hence the proper time rate of J?‘ can be written 

i - 
.,Ha = - q & P  (1.2) 

i Equations of part I are referred to with a prefix I, for example, (1-3.26) is equation (3.26) of part I 
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where E,, is a skewsymmetric 4 x 4 matrix whose general covariant decomposition is 
(compare equations (1-2.15) and (1-2.16)), 

Q a0 - p;pJs B y J 9  R,, = -R  P l ?  Q,,Ufl = 0 (1.3) 

[ = - - =  -,pup, 
1 

[ , U a  = 0 
C 

where U' and Palp are the four velocity and the projection operator (cf I). Q m p ,  the rotation 
tensor of 2, and l, are PU tensor fields (cf I). The value of c, is determined by noting 
that .A@ is also PU. Thus, taking the inner product of equation (1.2) with U', one gets 
for every four vector A? 

- 
A~(irp-Z3Ppu,) = 0. (1.4) 

Hence, after equation (1.3 part five) 

1 c - -up.  (1.5) 
p - C  

Then, equation (1.2) reads 

1 2, = Q,,JP +-U C2 u , 2 , .  (1.6) 

Clearly, the second term represents a Fermi-Walker transport, that is, the four vector 
J p  is carried along with the motion x u  while i t  rotates about the event point xu  by an 
amount given by the rotation velocity Q Z p .  Notice that equation (1.6) is similar to the 
equation of time evolution of a director in the theory of oriented relativistic continuous 
media (cf Maugin and Eringen 1972d). Hence 2, plays the role of a director while the 
tensor R,, replaces the gyration tensor v,, of relativistic micropolar media theory. 
This analogy was already noticed in the classical three-dimensional theories (cf Maugin 
and Eringen 1972a). 

Equation (1.6) is also verified for saturated magnetization since, taking the inner 
product of (1.6) with &, one gets from the skewsymmetry of Q,, and the PU character 
of 2, 

.A,& = 0, A?,& = constant (1.7) 

along a world line. 
Finally, introducing in a unique way nS, the dual of Q,, in M4, by 

n%lp = 0 

equation (1.6) reads 
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For small velocities, this yields the classical spin equation 

p = TIxp+O(cC2) (1.10) 

in which p is the three-dimensional magnetization vector per unit mass and TI is its 
angular velocity (cf Maugin and Eringen 1972a). 

In resume, the present problem, apart from the study of the different terms which 
contribute to  the energy-momentum tensor, is to find the form of the tensor R,, 
(equivalently nP) as a function of the phenomenological representation of the different 
interactions that take place in the medium. 

Following the results of part I, the equation of conservation of internal energy and 
that of entropy production are examined in $ 2 .  Constitutive equations for conservative 
processes are established in $ 3 for nonlinear elastic materials (ie subject to large deforma- 
tion fields) by use of the Clausius-Duhem inequality. This follows the study of Lorentz 
invariance and the application of the principle of objectivity to the magneto-free energy 
function. Some remarks concerning the saturation of the magnetization are made in $4 .  
The results so obtained are brought together with those of the variational approach 
given previously (Maugin and Eringen 1972c), in 5 5. Dissipative processes which lead 
to heat propagation and relaxation of the spin will be examined in part 111 following 
the use of Ziegler's (1963) principle of least irreversible force, representation theorems 
and Onsager's relations. 

2. Thermodynamical equations 

In this section, we give a form of the second principle of thermodynamics appropriate 
to the study of constitutive equations. The study of general thermodynamical processes 
in continuum physics is based on three equations or inequalities. The first two of these 
are the equation of conservation of energy-quivalent to the statement of the first 
principle of thermodynamics-and the entropy inequality-quivalent to the statement 
of the second principle of thermodynamics. In the present theory, these equations have 
been given in part I t  

(2.1) 

We recall the notation E ,  q, 8, h, 4", to", 28" and 8, which are the specific internal energy, the 
specific entropy, the thermodynamical temperature, the heat source per unit of proper 
mass, the heat flux four vector:, the relativistic stress tensor, the magnetic intensity four 
vector and the electric four vector respectively. j Y  is the conduction current. A super- 
posed dot denotes proper time differentiation. l?P" is the quantity defined as 

t A minus sign is missing from the term p h  in equation (1-4.8) while equation (1-3.32 part four) should read 

1 The quantity q8 appearing in equation (2.1) is only a notation in the decomposition of the stress-energy- 
momentum tensor. In the present theory, it differs from the heat flux vector Q* by a term due to the presence 
of exchange forces (compare hereafter). 

h = .faun. 
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The form of p", the so-called nonmechanical momentum, has been given in part I t :  

(2.4) 

in which Spa is the intrinsic spin and M a P y  is the relativistic couple stress tensor. 
The third equation, in fact equivalent to equation (2.2), is the entropy production 

equation written as follows. Introducing the specific free (Helmholtz) function Y by 
the definition 

Y = E - @  (2.5) 
and differentiating with respect to proper time, one obtains 

P t  P . 
8 8  

prj = ---(Y + q 8 ) .  

Other forms can be given to equations (2.2) and (2.6). The term defined as 

is called the Clausius term (cf Maugin 1971~). Then equation (2.2) reads 

p r j - g  2 0. 

p r j -g  = f = pRrj+pf#) 

The positive quantity so defined we call the Jouguet term 

in which f#) is the dissipation function density. The recoverable entropy 
shown to vanish in 0 3.3. Thus we will have 

@ = pef#) 3 0 

which is the dissipation inequality. The form of @ is given in 0 3.3. 

(2.9) 
rate R r j  will be 

(2.10) 

It is interesting to use other variables in lieu of E and Y. In fact, the internal energy 
E is supposed to be dependent on the field Ba. We prefer to use the magneto-internal 
energy e which depends on the magnetization vector (cf equation (1-3.43) and Fokker 
1939) 

e ( J 7 )  =  BY) + Pw,. 

Y* = e-q8 = Y+.&B',. 

(2.1 1) 

(2.12) 

Accordingly, the magneto-free energy Y * is defined as (cf Maugin 1972a, e) 

I t  follows that equation (2.1) is written 

1 
I C 2  

p e  + q P i P  + pati, - tPau,;p = - p h  + gYj7 + pBaJa - -E~~~"A~G;U,U~ (2.13) 

and equation (2.6) reads 

P i  P 
8 8  

pf j  = ---(Y*+@). (2.14) 

t It should be a factor of 1/c2 instead of l/c in the second and third terms of the right hand side of equation 
(1-4.6). 
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Further transformations of the inequality (2.2) with the aid of equations (2.13) and (2.14) 
will lead to the useful Clausius-Duhem inequality. Before, we transform equation 
(2.13), we carry the value of pp provided by equation (2.4) into (2.13) and use equation 
(1.6). We thus obtain 

(2.15) 

where we used the skewsymmetry of So" and the fact that 2, is PU. Furthermore, since 
tpa is PU and using the decomposition of e,, (cf equations (1-2.20)) 

(2.16) 

(2.17) 

(2.18) 

The value of p g [ " . ~ @ ~ '  is given by an equation derived in part I (cf equation (1-4.5)) 

We need to compute the quantity 

- P .  1 2 
2 C C2  

p & 4 " [ ,  = - - s=Pnp, + t[""R,, + 7 pS~u~'tr''R,, + M"P':$,, - - M["l ~~'U%7;,Rp,. 

(2.20) 

The third and last term in the right hand side vanish because of the PU character of 
R,, . The first term vanishes since the magnetic spin yields a d'Alembertiun inertia couple, 
that is, sap does not work in a real rotation R,, (cf appendix 1). The fourth term can be 
written as 

M"";:,R,, = (M"Pa,,);:. - IM~PQ,,;.;. (2.21) 

At this point it is convenient to sett 

q p  = $ p  + MP"PR v , .  (2.22) 

Carrying the expressions (2.17), (2.20) and (2.22) into equation (2.15), we obtain the 
equation of conservation of energy in the form 

p e  + $ P , ,  +i@u, - t(Pa)olp - t[Pzl(coZp + R,,) - M'P~A,,, - 8, j y  = - ph 

in which we have defined the kinematical quantity 

1 
(2.23) 

C 

(2.24) 

Now, following the usual method, we eliminate the heat supply between equations 
t This is in conformity with the liberty left when one establishes a model of magnetomechanical interactions 
(so far we are concerned with the form of the stress-energy-momentum); in this respect, see Sedov (1965). 
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(2.23) and (2.2) and use equation (2.14) to  get the Clausius-Duhem inequality in the 
form we shall keep from here on 

(2.25) 

in which we introduced the relativistic temperature gradient (cf Maugin 1971c) 

6, = p j ( e , y  + C- 2eir,) (2.26) 

In the next section, we establish, for a special class of material, a reduced form of 
since @ is PU. 

Y* from which we shall compute the proper time rate Y* needed in equation (2.25). 

3. Conservative processes 

3.1. The Lorentz invariance requirement 

In this section, the recoverable parts of the constitutive equations will be shown to be 
derivable from a potential, the relativistic magneto-free energy density Y *. Before 
doing so, the physical behaviour of the material must be specified. In the following, 
we consider a heat conducting nonlinear elastic solid of grade one in interaction with the 
magnetic field. Furthermore the solid may be an electric conductor. The material 
symmetry (ie the crystallographic group to which the material belongs) is not specified. 
In order to  represent the elastic behaviour of a solid of grade one, we need to introduce 
only the first relativistic gradient of the motion x ? ~  as an argument of Y *  (cf Maugin 
1972d). In order to take account of a phenomenological representation of anisotropy 
and exchange force fields observed in ferromagnetic materials, one must consider a 
dependence on the magnetization four vector and its ad hoc constructed gradient (cf 
Maugin and Eringen 1972a, c). Finally heat coyduction leads to a dependence of Y *  
on 8 and the relativistic temperature gradient 0,  defined by equation (2.26). Material 
inhomogeneity implies an explicit dependence of Y * upon the lagrangian coordinates 
X K .  Hence we consider 

Y* = Y*(x?,: .2,; M?,; 82; e ;  e , ;  XK).  (3.1) 

A material defined by equation (3.1) presents no hereditary character for Y *  is a classical 
function of class C"-at least of class C'-with respect to its arguments and not a 
functional. The value of the arguments is taken at the present event point xz of the 
space-time manifold of Minkowski M 4 .  It is easily verified that, in agreement with the 
postulates set forth by Maugin (1971b, 1972f), all these arguments are PU four vector fields 
or proper invariant (such as 8 and X K )  since we have defined 

x:K E PPpxPKj x:Ku, = 0 (3.2) 

MY, E P ~ y A ? ; p ~ t ; ( ,  M ? K ~ ,  = 0 (3.3) 

eau, = 0, P U ,  = 0. (3.4) 

- 

Finally, we recall that Y* is a proper scalar, that is, measured by an observer following 
the element of continuum in its motion. Therefore it is a Lorentz invariant. This brings 
a constraint to the function form of Y*. Indeed, considering an infinitesimal trans- 
formation of the form (space-time translations need not be considered since Y* which 



312 G A Maugin 

does not depend explicitly on x' is obviously form invariant under such transforma- 
tions) 

x*' = C Q ? ~ X ~  (3 .5 )  

in which E is infinitesimally small and Q Z P  is skewsymmetric, the invariance of Y * under 
such a transformation yields for arbitrary QZo 

dY* dY* - ?Y* dY* ?Y*.  
-"Pl.h.+m4D1+m ?X!; MBIK+,-~ol+-Pt~ ,-&[a d e [ a  !4 - - 0. (3.6) 

This linear first order partial differential equation can be integrated by the usual 
method (characteristics). The solution obviously depends upon Lorentz invariants--- 
here, material tensors (in other words, lagrangian measures). The integral of equation 
(3.6) is 

(3 .7 )  

where the Green deformation tensor C,, and the other lagrangian measures are 
defined by 

Y* = Y*(cKL.  M L .  M L , .  gK, e. O K .  x") 

c,, = .xzK.Y;L, .If, EE .S?[...Liz 13.81 

(3.91 .MI,, = .x?L.Ma, = z:,; LJ?" 
0, .Y$, = .YZ,(O,, + c - ?hi,), 6, = s?,',G,. (3.10) 

As was already emphasized by Kafadar and Eringen (1971) and Maugin and Eringen 
(1972c, d), i t  is remarkable that the function dependence (3.7) obtained by application 
of the Lorentz invariance imposed to Y* is. for materials whose basic mechanical 
behaviour is elustic, identical to that obtained by application of all presently formulated 
forms of the so-called principle qfobject i t>ir j  in relativistic continuum mechanics. This 
question is briefly examined in the next section. 

3.2. Objec,ticity 

The very controversial question of constructing a relativistic extension of the principle 
of objectivity (principle of material frame indifference) of classical continuum mechanics 
has been approached from many viewpoints. Whereas Bressan (1963) suggests using 
directly lagrangian measures in the constitutive variables without any further reference 
to any such principle (a procedure used by Maugin (1971d) in his study of magnetized 
media in general relativity), Bragg (1965) postulates his principle of nonsentient response. 
and Soderholm (1970. 1971) by studying classes of so-called equivalent motions in 
special relativity, gives a formulation very close to that of classical continuum mechanics. 
The latter formulation has been used by Maugin and Eringen in their studies on polarized 
elastic materials (Maugin and Eringen 1972c) and oriented elastic materials (Maugin 
and Eringen 1972d). Grot and Eringen (1966) and, in fact, Kafadar and Eringen (1971) 
prefer to consider the invariance under the constant group of homogeneous Lorentz 
transformations. In that case, the remark made at the end of the foregoing section is 
supererogatory. More recently, the present author has proposed, in the frame of general 
relativity theory, to replace a pure extension of the CnoncP of the classical notion ofobjec- 
tivity by a postulate on the functional dependence of the constitutive variables (Maugin 
1972b). These variables should depend only on quantities measured in the local Fermi 
frame. This postulate has been applied with success to different media presenting 
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hereditary properties (Maugin 1972~). Moreover, such a formulation encompasses, in 
special relativity, that of Soderholm which we consider to be the best one in special 
relativistic continuum mechanics (cf Maugin to  be published). In any case, one must 
note that the objectivity principle takes all its importance in the study of constitutive 
functionals. For the case of constitutive functions, the Lorentz invariance is indeed 
sufficient in special relativity. 

The application of Maugin's (1972b) formulation goes as follows. Call x i ,  
E = 1,2,3,4, a local chart in the neighbourhood of event point M : x "  = P ( X K ,  5 )  such 
that the motion is irrotational in xi ,  that is, 

w,p(') = 0. (3.11) 

such a frame exists, see Edelen (1963). Call xi,  x', k = 1,2,3, a Fermi frame at event 
point M and let @ = K ( T )  be a Fermi triad at M t .  Then, the application of the PMIR 
(principle of material indifference in relativity) requires that Y * given by (3.1) be written 
as 

(3.12) Y* = Y * ( A ~ , X P , ,  A!~J&, I \ ! ~ M : , ,  A!,&;, e, A P ~ ~ ; ,  X K ) .  

But it has been shown that (Maugin 1972c) 

AiL(') = x i M ( s ) . o z ~ ( z )  (3.13) 

where .dz is a function of C K L ( 7 ) .  Hence the equation (3.12) can be written 

y* = Y * ( d T X C M X ! K ,  d z x c M @ ,  . . .). (3.14) 

Note that C M K ,  M M ,  . . . are Lorentz invariants, that is, 

Thus equation (3.14) reads 

y* = y*(CKL 9 M L  9 M L K  9 EK 3 6, O K  9 X K )  (3.16) 

which is equation (3.7). Conversely, one easily checks after some algebra that equation 
(3.16) is a solution to  equation (3.6). Finally, we remark that the set of arguments in 
equation (3.16) forms a minimal function basis o f  functionally independent arguments, 
in the sense of Kafadar and Eringen (1971), for Y* expressed by the equation (3.1). 

For further use we must compute the proper time rate of Y*.  According to equation 
(3.16), we have 

(3.17) 

After equations (3.2) and (3.8 part one) and the definition of the projection operator 
Py, we get 

(3.18) 

t AUl has properties very similar to those of the orthogonal transformation considered in the principle of 
objectivity of classical continuum mechanics : i t  is isometric and depends upon the local proper time. 
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From equations (3.8 part two), (3.18 part one) and (1.6), we obtain 

M ,  = k"L21+x: ,  Rpadp+2u,ul-x' 

M ,  = (U*;? + Q&PX?,  (3.19) 

in which we used the fact that dz and x : ~  are PU. The computation of hi,, is more 
involved. We have 

= + B L K  + D L K  

with - * 

A,, e i ? L A 7 ; v ~ ! K ,  B L K  E x?L-&~;$!K 

We readily get 

since .,,#? is PU. By using (1.6), we get for B L K  

(3.20) 

(3.21) 

In order to  compute D , K  we note that 

Collecting the results (3.18) through (3.22), carrying them in equation (3.17), rearranging 
the indices and introducing when necessary the rate of strain tensor cap and the vorticity 
tensor ozp (cf I), we obtain after some lengthy algebra 
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3.3. Constitutive equations 

In this section, we obtain the recoverable parts of the constitutive equations for a non- 
linear (hyper) elastic solid of grade one. Indeed, the constitutive variables tBu and M P y z  
present, in general, recoverable and dissipative parts. Hence we write 

t P a  = RtPz+DtPa 

M P ~  = R M P Z Y + D M P Z Y ,  (3.28) 

The conduction current j y  and the heat flux vector Q P  are, of course, purely dissipative. 
Then, using the decomposition (3.28), we can write equation (2.25) in the form (2.8), 
with 0 > 0 

(3.29) pRtje + 0 2 o 
with 

pRtj = 8- '{ - p(Y* + q8)+ R t ( P a ) ~ z P  + Rt[pal(WaP + Oms) + R M P a Y A l l p y }  (3.30) 

(3.31) 1 .  
Q = q y  - - p e s  + ~ t ( ~ z ) ~ ~ ~  + ~ t r ~ q ~ , ~  + Q ~ ~ )  + D M P = ~ A ~ ~ ~ ,  e 

Carrying the results (3.23) through (3.27) into equation (3.30), we obtain 
p R Q e  = - p(rl - q)d + ( y ~ a )  - pqa + ( ~ ~ r s a i  - as + Q 4 ) + ( R M P ~ Y  - @ s a r ) ~ ~ ~ ~  aP 

(3.32) 

Note that the quantities in the factors of each rate 8, cas, uas+O,,, AaPyr kK and d K  
do not depend on the corresponding rates. Thus, for all independent dynamlcal processes 
8, oZs, uZs+Qz,!, Amsy ,  kK and d K ,  the inequality (3.29) with '4 given by the definition 
(3.32) can hold if and only if 

r ] = q  (3.33) 

(3.34) 

(3.35) 
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Hence, with 

the constitutive equations 

?Y* q = -__ 
20 (3.40) 

(3.41) 

(3.42) 

defines an inhomogeneous hyperelastic magnetized solid which is neither a heat nor 
electricity conductor (the case of incompressible solids is briefly examined in appendix 
2). In contrast to the equations derived by Maugin (1971d) in general relativity by use 
of a variational principle. magnetization gradients are taken into account in the present 
formulation. This fact is reflected by the presence of the constitutive arguments M,K 
in the magneto-free energy Y* and the occurrence of the supplementary constitutive 
variable MPZ, .  Equation (3.38) in which the dissipation density @ is given by (3.31) is 
the dissipation inequality announced in 0 2. The latter inequality we shall use in part I11 
in order to study dissipative processes which result in heat propagation, electrical con- 
duction, dissipative stresses and relaxation of the magnetic spin. Before we must focus 
our attention on the remarks that follow in the case of saturated magnetization, and 
show that the field equations and constitutive equations obtained are, for the case of 
nondissipative processes, in agreement with those derived from a variational treatment 
(Maugin and Eringen 1972~). This comparison is most important for the equation of 
conservation of moment of energy-momentum which should take a form closer to that 
of the classical spin equation (1.10). Note in particular that, if we have obtained a 
constitutive variable which can represent in a phenomenological way the action of 
Heisenberg's exchange forces, namely MPa;', we have not obtained any constitutive 
variable likely to represent the anisotropy field. In fact, as shown below, this variable 
is hidden in the formalism used here above. 

4. Saturated magnetization 

In the case of saturated magnetization, one should be more cautious in performing the 
differentiation (3.17) for, taking the proper time derivative of M ,  and M,,  is equivalent 
to differentiating the magnetization four vector ,& and its gradients with respect 
to the proper time. However, as shown hereafter, this fact is irrelevant. Indeed for 
saturated magnetization, we have 

= A?: = constant. (4.1) 
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By differentiation with respect to  proper time and space-time coordinates, we get 

&Jz = 0 (4.2) 

&ATm;, = 0. (4.3) 

According to a remark made in 0 1, if we replace dm in the first of these by its value given 
by equation (1.6), we obtain identically zero. Thus we may disregard the first constraint 
and need not introduce a Lagrange multiplier. This is to be compared with the fact 
that the equivalent constraint can be discarded in the classical three-dimensional theory 
(cf Maugin and Eringen 1972a). Now note that equation (4.3) represents only three 
independent equations for, multiplying by U” yields the scalar equation (4.2). Thus, 
without loss of generality, we can take in lieu of the second constraint 

2, = P A ? , ; w X ! K  = 0, K = 1,2,3 (4.4) 

pK = .d&zA?m;wx!K + ,&A?,;,X!K + 

which is to be differentiated with respect to proper time if we want to get rates of .JziP. 
We have 

L 

(4.5) 

Using equation (1.6) and performing algebra similar to that made in order to get the 
value of hi,, in 8 3.2, we obtain after some lengthy computations 

(4.6) 

This is in fact identically zero since A,,, is skewsymmetric in the indices /3 and c(. Hence 
we need not introduce three Lagrange multipliers LK ( K  = 1,2,3) in order to take 
account of the constraint (4.6). We can say that the saturation of the magnetization is 
implied in the formula (1.6). This is indeed clear if we carry on the identification of the 
magnetization dm with a director. In the paper of Maugin and Eringen (1972d) which 
considers relativistic oriented continua, an equation similar to (1.6) is given. I t  describes 
the motion of a rigid, that is, of constant norm, director. The equivalent statement here 
is that the magnetization has a constant modulus in space-time. Hence we may try 
without any further precaution to bring together the results of § 3 with those of the 
variational approach which was indeed given for the saturated case. 

5: Comparison with a variational approach 

The comparison can only be carried out for nondissipative processes since the varia- 
tional principle was, of course, established with this hypothesis ; so we set 

We thus omit the left superscript R in the remaining constitutive equations. We remark 
that, given the form of the constitutive equation (3.42), we can introduce in lieu of M y P p  
another constitutive variable Ilnpw by 

%JIlnpw is also a PU tensor field as is readily checked. Furthermore it behaves like an axial 
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four vector with respect to its first index. I t  follows that 

(5 .3 )  

Carrying the constitutive equation (3.36 part two) and the result (5.3) into equation 
(2.19), we obtain 

That is, 

in which we have introduced the new PU constitutive variable 

which we call localjeld or, better, anisotropyjeld since further identification shows that 
this is the phenomenological role we can assign to  this quantity. I t  is readily verified 
that the left hand side of equation (5.5) is nothing but the projection of 3ppD on to the 
hypersurface M: (cf notations of part I)  while the last term in the right hand side of this 
equation is the projection of the quantity ~? [ ' (m~~ ; ,  on to M : .  This is proved by play- 
ing with the skewsymmetries in the last term within parentheses. Finally, recalling 
that (cf equation (1-3.40)) 

(5.7) 

in which y is the gyromagnetic ratio of an electron and fiZo is the magnetization two- 
form per unit of proper mass, and noting that ~ P , , B ~ a n d  do are PU, then for example, 

S Z P  = . , - l R z D  

@". /go1 p: pp*@,&,/gK 

we can write equation (5.5) as 

P{A.fl) = P{2y2["Bgf) 

Lqff = 3" + L a x  + p - %I?{, 

where the effectiuejeld a PU four vector field, is defined as 

(5.9) 

and we have used the short hand notation P for the operation of projection on to M : .  
Equation (5.8) is the form forecast in Maugin and Eringen (1972a) (cf equation (5.14) of 
that paper and the remark thereof) but it is relativistically invariant. It represents three 
independent field equations. 

At least for nondissipative processes, the system of field equations obtained in part I 
is now in closed form. Though we introduced new constitutive variables LBa and %W". 
the number of unknowns is unchanged, for t (Da),  and %Vu" on the one hand and to" 
and Moa? on the other have exactly the same number of independent components. 

Recall now that in the variational approach (Maugin and Eringen 1972c) which 
used two-form (skewsymmetric tensor) formalism and not four vector notation, the 
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magnetic spin equation obtained (not projected on to  M:) was 

f i " B  = 2 y ; p B l  (5.10) 

in which the efSectiue magnetic f lux tensor FuY (equivalently the rotation of dP since 

RUP = y F U P )  was defined as 

* 
* 

* 
FY = FY+2y- 'a [ "# ]+sW+2p- ' f132~p ; P '  (5.11) 

Here Fah is the maxwellian magnetic flux tensor and 9''' is the local magnetic f lux or 
anisotropy field tensor. f132wp is the electromagnetic hyperstress tensor (skewsymmetric 
in its two first indices and completely PU). The tensors 9"" and 9 P ' P  were shown to 
provide a phenomenological representation of the magnetic spin-crystal lattice and 
spin-spin interactions respectively. The PU four vector field aa was introduced as a 
Lagrange multiplier with a view to take account of the Frenkel condition (cf part I) 
and was shown to be a complicated expression which involves the Lorentz force, gY 
and the divergence of CJnWp. The factor two in front of the divergence of IIJzWp in equation 
(5.11) appears because the tensor CmWp has been obtained by differentiating the free 
energy density with respect to  a skewsymmetric tensor but this skewsymmetry has not 
been taken into account in the process. 

Equation (5.11) written in the two-form formalism has, apart from the term involving 
a', a structure similar to  that of equation (5.9). We are easily convinced that equations 
(5.11) and (5.9) are dual formulae if we remark that the dual of the skew tensor a['#] is 
indeed zero since it would be defined as 

(5.12) * 1  
a. = -c7Wvaau"uv = 0 ' 2ic 

from the skewsymmetry of 
In absence of electric field (cf equation (5.1)), polarization and polarization gradients, 

the skewsymmetric tensors Fw, saw and f132Wp are indeed equivalent to the axial four 
vectors Ba and L9#a and the tensor '%Rap (axial with respect to the index a) respectively. 
The magnetic spin equation and the constitutive equations of the variables which appear 
in it assume therefore the same form in both approaches. Furthermore the equation 
(5.10) and now, equation (5.Q have a form similar to those of equations (1-5.8) and 
(1-5.10) (postulated a priori) when the last terms in the right hand sides of these equations 
vanish. In fact these supplementary terms result from linear but physically involved 
dissipative processes the study of which will be given in a forthcoming paper. As a 
final remark, it is also verified that, for small velocities and quasi-magnetostatics, we 
obtain the equations of the classical three-dimensional theory (cf Maugin and Eringen 
1972a). 
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Appendix 1 

Many authors have emphasized that the magnetic spin gives rise to  a couple of the 
gyroscopic type. A peculiar characteristic of such a couple is that it produces no work 
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in a real displacement (here rotation) field although it does in a virtual displacement 
field. This fact is linked to the 'kinematical' or nonholonomic (ie nonintegrable) nature 
of the angular velocity field. In the classical three-dimensional theory, since (cf equa- 
tion (1.1)) 

p = n x p  (A.1) 

p.n= ( n x p ) . n  = 0. ( A 4  

one of course has 

In four-dimensional formalism, we have (cf equations (1.8), (1.9), (5.7) and (1-3.38)) 

Y U P  = 0 ('4.3) 
1 

Qsa = 7 € p w y Y U V ' ,  
1C 

Then, using the two last equations, the real work of the magnetic spin is 

but, 

caB;'a = 2(6;6; - 6:s;) (A.7) 

so that equation (A.6) reads 

A = - y - l , J P f  ('4.8) 
in which we have used (A.3 part two), (A.5 part two) and the equations (cf part I )  

u,uy = -e2,  uwuy = 0. ('4.9) 
Finally, using (A.4), we obtain 

(A.10) 

from the skewsymmetry of and equation (A.3 part two). 

Appendix 2. Incompressibility 

A relativistic incompressible solid may be defined as one for which the following condi- 
tion holds: 

(A.11) 

That is, the dilatation vanishes. According to the continuity equation (1-4.1), the 
invariant relativistic density p is then constant along a world line. Since oaS is a PU 
tensor, ( A . l l )  can be written as 

P:p!, = 0. (A.12) 

0 = a:a = 0. 
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This constraint must be taken into account in performing the differentiation (3.17). 
Introducing a Lagrange multiplier p referred to as the mechanical pressure (an unknown 
to be determined upon solving a peculiar well posed problem with given boundary 
conditions and initial conditions on a space-like hypersurface), we should write the left 
hand side of equation (3.23) as pY*+pPPa,, .  This would result in adding a term 
-pPB to the constitutive equation of tpa. 
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